BANGABASI COLLEGE TEST EXAMINATION - 2016 B.SC (HONOURS) PART I

SUBJECT: COMPUTER SCIENCE (PAPER I & PAPER II)

Full Marks: 100 Times: 4 Hrs

Answer Question No. I and any Eight questions from the rest taking at least one question from each group.

Answer any ten questions from the following:

2×10=20

 Using Boolean algebra techniques, simplified the following expression as much as possible

- Show that dual of XOR is equal to its complement.
- c) Distinguish between decoder and de multiplexer.
- d) What is bus arbitration?
- e) What is the difference between ROM & PROM?
- f) What is stored memory architecture?
- g) What is hamming code?
- h) What is ASCII?
- i) $(5234)_8 = (?)_{16}$
- j) What is the important of 2's complement method?
- k) What is Multiprogramming?
- What is Thrashing in OS?
- m) What are the differences between p-type semiconductor and n-type semiconductor?
- n) What are the differences between compiler and interpreter?

GROUP-A

(COMPUTER FUNDAMENTALS)

- a) State De Morgan's law.
 - b) Compare and contrast at least two bus structures.
 - c) What are the advantages of having floating point arithmetic with un-normalized form?
 - Develop the logic circuit for adding two decimal digits express in excess-3 code.

2+2+3+3

- 3 a) Reduce the SOP expression F(A, B, C, D) = ∑ m(0, 1, 2, 3, 6, 7, 13, 15) by K-map method and implement the result in NAND logic circuit.
 - b) What is the difference between assembly language and machine language?
 - c) What is the importance of system software?

GROUP-B (INTRODUCTION TO BASIC ELECTRONICS)

- 4 a) State KCL and KVL Theorem.
 - b) Find out all the currents through the efecuit.

(2+2)+6

- 5 a) State Theynin's Theorem.
 - b) Find out the Current flowing through the Load resistance R2 using Norton's Theorem.

 Find out the Current flowing through the Load resistance R_{LOAD} using Thevnin's Theorem.

2+4+4

GROUP-C (DIGITAL SYSTEM DESIGN)

 a) Implement the following Boolean function F, together with the don't-care conditions d, using no more than two NOR gates

F(A, B, C, D)=
$$\sum$$
(2, 4, 6, 10, 12)
D(A, B, C, D)= \sum (0, 8, 9, 13)

Assume that both the normal and complement inputs are available.

b) A combinational circuit is specified by the following three Boolean functions

F1(A, B, C)=
$$\sum$$
(3, 5, 6)
F2(A, B, C)= \sum (1, 4)
F3(A, B, C)= \sum (2, 3, 5, 6, 7)

Implement the circuit with a decoder constructed with NAND gates and NAND or AND gates connected to the decoder output.

- 7. a) Realize $F(A, B, C, D) = \sum (0, 1, 3, 5, 6, 8, 9, 13, 15)$ using 8×1 mux.
 - Design a code converter that converts a decimal digit from the 8, 4, -2, -1 code to BCD.

6+4

GROUP-D (COMPUTER ORGANIZATION-I)

- 8. a) What do you mean by Addressing mode? Explain the following address mode
 - i) direct
 - ii) relative
 - b) What is pipeling technique? Differentiate between RISC and CISC.

(2+(2+2))+(2+2)

- a) Explain the function of cache memory in the memory hierarchy.
 - A digital computer has a memory unit of 64K x 16 and a cache memory of 1K words.

The cache uses direct mapping with a block size of four words.

- i) How many bits are there in the tag, index, block and word fields of the address format?
- ii)

6+4

GROUP-E

(SYSTEM SOFTWARE FUNDAMENTALS AND OPERATING SYSTEMS)

- 10. a) What is medium-term scheduler?
 - b) What are turnaround time and response time?
 - c) What is the average waiting time for the following processes if priority scheduling is used:

Process	Burst Time	Priority		
Pl	10	3		
P2	1	1		
P3	2	4		
P4	1	5		
P5	5	2		

2+(2+2)+4

- 11. a) What are the necessary conditions for occurring Deadlock in OS? Explain.
 - b) An operating system uses the Banker's algorithm for deadlock avoidance when managing the allocation of three resource types X, Y, and Z to three processes P0, P1, and P2. The table given below presents the current system state.

		Allocation			Max		
		X	Y	Z	X	Ι.	Z
-	P0	0	0	1	8	4	3
	Pi	3	2	0	6	2	0
	P2	•	1	1	3	3	3

There are 3 units of type X, 2 units of type Y and 2 units of type Z still available . Is the system in safe state? Justify 4+6

GROUP-E

(DATA STRUCTURE-I)

- 12. a) Define Data Structure.
 - b) Given two matrices that contain numbers. Write algorithms of functions that
 - i) Computes the sum matrix. ii) Computes the product matrix.

2+ (4+4)

- 13. a) Write an algorithm to sort an array in ascending order.
 - b) What is an array? Explain with a diagram.
 - c) How is a string different from a character array?